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On the Buckling/Kinking Compressive Failure
of Fibrous Composites$

by

L. Chung and Y. Weitsman*
Department of Engineering Science and Mechanics
The University of Tenneseee

Abstract

In this article it is demonstrated that the compressive response of uni-
directionally reinforced composites may initiate in a micro-buckling mode
and subsequently switch to a micro-kinked configuration. The foregoing
possibility derives from a mechanics model which considers initial fibers
misalignments, non-linear shear response of the matrix, shear deformable
fibers and stochastic fiber spacings. The latter non-uniformity in fiber
spacings plays a major role in the generation of fiber kinks.

Various features of the compressive deformation and failure process are
exhibited by computational examples.
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Introduction

The compressive response of composites has been studied extensively
during the past three decades by many researchers. Many of the above studies
are noted in comprehensive listings and review articles by Shuart (1985),
Camponeschi (1991), Guynn et al. (1992) and Piggott (1993), and will not be
detailed here. Suffices to say that experimental data on compressive response
exhibit substantial scatter, which is partly attributable to variability of the
loading mechanisms and partly due to its sensitivity to random material
flaws and misalignments. On the other hand, many analytical and
computational models predicted compressive strengths in excess of
experimental values. This saortcoming led to an ongoing effort to construct
more complicated models, which incorporate additional material and
structural parameters, to achieve closer correlaticn between predictions and
data.

An intriguing aspect of the compressive response of fibrous composites is
their failure by kinking. In most circumstances post-failure inspections
reveal the presence of titled bands of broken fibers, separated along oblique
straight lines from the remainder of the test sample. Since the formation of
these so-called kink bands does not appear accord with a buckling mode of
failure, most existing models address the compressive failure of composites
either as a buckling or as a kinking phenomenon, to the exclusion of the
other. These models can be grouped as follows:

(1) Models which consider buckling.

These include the work of Rosen (1965), which seems to be the first article
on compressive failure of composites. Considering "shear-mode buckling”
that model predicted a failure stress Ocgr = G /(1 - ¢f) , where Gp, is the shear

modulus of the matrix and ¢;the fiber volume fraction. That prediction is
inadequate for two reasons: (a) it gives Ocr which is several times higher

than experimental values, (b) the relation O'CR~1/(1 -¢f) contradicts

experimental observations which show that Gcr grows linearly with ¢¢ (at
least up to ¢; = 0.55) (e.g. Piggott and Harris (1980), Morley (1987)).

Several modifications to Rosen’s model were introduced subsequently.
Primarily, these modifications considered non-linear shear response of the
matrix and initial fiber waviness (e.g. Wang (1978), Lin and Zhang (1992),
Guynn et al. (1992), Highsmith et al. (1992) and others listed in the

accounting for large deformations of the fibers by Yin (1992). Though thke

latter model stems from a buckling formulation, it is worth notmg that it /
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proposes a criterion for kink formation, which occurs when fibers' curvature
attains a critical value.

(2) Models which consider the a-priori existence of kinks.

These include works by Evans and Adler (1978), Hahn and Williams
(1986), and Budiansky and Fleck (1992).

In all the above works the fiber reinforced composites were viewed as
lamellar regions which consist of fiber and matrix layers as shown in Figure 1.
It should be noted that several investigators (Sadowsky et al. (1967),
Herrmann et al. (1967), Lanir and Fung (1972) and Greszczuk (1975))
considered fibers of cylindrical geometry. All the latter works assumed linear
elastic behavior of fiber and matrix materials.

The validity of representing fiber-reinforced materials as lamellar regions
was questioned recently by Weitsman and Chung (1994), where severe
disparities were shown to exist between strain fields in lamellar and arrayed
fibrous geometries subjected to buckling-mode deformations. This issue is
the subject of an ongoing investigation.

The main purpose of the present article is to present a model for the
compressive response of fiber reinforced composites which suggests a
transitional mechanism from a micro-buckling form of deformation to a
micro-kinking mode of failure. The model employs the lamellar geometry of
Figure 1 and incorpoates non-linear shear response of the matrix and linearly
elastic, shear-deformable fibers. In addition, the model considers two kinds of
geometrical imperfections, initial fiber misalignments and non-uniform fiber
spacing. The latter consideration is the novel aspect of this work. In closely
spaced fibrous domains the narrow matrix regions sustain increased levels of
shear strains which approach yield or failure limits. The resulting softening
in the support provided by the matrix to the fibers is shown to cause localized
fiber failures, accompained by overburdening the more widely spaced fibers.
Though compressive failure still occurs by buckling, the immediate post-
buckled configuration is shown to consist of kinked fibers. The sudden
transition from buckling to kinking is due to the abrupt variation in the
deformed configuration which follows the buckling instability. This
comprehensive accounting for the seemingly disparate phenomena of
buckling and kinking is the main asset of the present model.

Non-uniform fiber spacings were considered by Chung and Weitsman in a
previous work (1993). However, in that work the fibers were modelled as
Bernoulli-Euler beams and, in the absence of shear deformations, could not
develop kinks. It is interesting to note that under the constraints inherent in
the Bernoulli-Euler beam theory the absence of kinks was compensated by the
presence of highly concentrated shear forces in the post-buckling range of




response. An abbreviated version of the current article with computational
results based upon material data reported by Guynn et al. (1992) is due to
appear in the Proceedings of the Twelfth U. S. National Congress of Applied
Mechanics (I. Chung and Y. J. Weitsman, 1994).

Basic Equations

Let a uni-directionally reinforced fibrous composite be represented by a
layered medium which consists of fiber and matrix layers of thicknesses 2h
and 2(c-h), respectively as shown in Figure 1. Let ¢¢ = h/c and ¢, = (c-h)/c
denote volume fractions where here, and in the remainder of this article,
subscripts f and m refer to the fiber and matrix, respectively. Let x and y
denote coordinates parallel and normal to the layers, with corresponding
displacements u and v.

Consider an initial waviness vy in the fiber layer, given by
vo = 8 cos (mx/L) (1

and let the fibers deflect in a shear mode of buckling as shown in Figure 2.
(Rosen (1965), Garg et al. (1973)).

The length L prescribes the micro-buckling length associated with
compressive loading N parallel to the fibers. We assume that the matrix layer
responds in shear only, sharing a common displacement v with the fiber,
while un varies linearly in x across the layer's thickness. In addition, we
suppose that the deformation within the fiber layer is expressed by

Timoshenko's shear-deformation model, where ¥ denotes the independent
rotation of the planar cross-section.

Accounting for bending effects, the total displacement of a fiber region U
is given by (Washizu (1975))

Uf’“f'l'%f [(v'+v(;)2-(v(;)2]dx-y\v 2
0

with the corresponding strains

ziau;-n-]z»[(v'-o—v(;)z-‘v(;)z]-yv' (3a)




fy=v'-v (3b)

v duy .
"= +3;. =v +2—(c1.—h-)-[U¢(x,2c-h)-U¢(x,h)]

. o U, &

=2Y ~— — =V +—VY (4)

Om Oy ém

In equations (2) - (4), and in the sequel, primes denote derivatives with
respect to x.

Consider linear elastic response for the fibers
ok =Ecel, Ty=Gs¥y )

and a non-linear shear response for the matrix, scaled by the initial shear
modulus G§,

§ =Gh Kig) ©
The total relative deflection between x = 0 and x = L/2 (say) is given by
12
A=uf(L/2)+%f [(v'+vo')2-‘v(;)2]dx 7
]
Random Fiber Spacing

As noted in the Introduction, random fiber spacing accounts for an
essentially novel feature in the present model. Following basic statistical
notions concerning the subdivision of a linear segment into M sub-segments
of random lengths (Dixon and Massey (1969)), we assume that the cell sizes 2c
are distributed according to a Poisson's point process, with a cumulative
distribution function

P(C>c)=exp(-¢/c) (8)




In equation (8) 2c is the nominal average of the cell sizes. Since fiber
regions cannot overlap, namely ¢ > h ("Gibbs hard core process”), equation
(8) is modified to read

P(C>c)-exp(-%—:—-% )

The corresponding probability distribution is

p(O=-1- ep(-£=0) 10

In the sequel we shall need to refer to the probability distribution of the

fiber volume fractions p(¢f) , where ¢¢ = lcl . Employing well established rules
of statistical analysis we obtain

P(«)-glzup(- ﬁh) (1)
om ¢ Om O

For computational purposes the distribution function P(¢f) will be
discretized and expressed by a finite number of Dirac delta functions.

Eield Equations for Randomly Spaced Layers In Compression
In view of equation (4), and subsequently equation (6), it follows that both

¥y and %) are functions of the ranodm variable ¢s and thereby random as

well. However, to ascertain common displacement A for all layers we assume
identical displacements u and v for all layers inspite of the randomness in
their widths 2c. We posit that the effects of random spacing are taken up by

distinct values of the rotation ¥, which vary from layer to layer.
Consequently, a descretized version of p(¢f) which corresponds to M
values of (¢‘)i i=1,...M) will necessitate the consideration of M values of
Vi i=1,...M).

The above assumption involves an approximation whose validity can be

estimated. It will be shown below that a solution for u, v, ¥y, ... ¥)y which is
based upon energy considerations for the entire composite fails to satisfy




equilibrium conditions for any of the M individual layers. The magnitudes
of the unequilibrated transverse forces (distributed transverse loads gi(x),i =1,
. . . M) provide the required estimate of error. It turns out that the above
magnitudes never exceed 1% of all calculated stress values, attesting to the
suitability of the approximation.

Application of the principle of virtual work to the entire composite
(Washizu (1975)), upon accounting for the randomness of the cell sizes c,
yields,

[p(C){I (0§Se§+t§yﬁy§y)dvf+j 12',&y,‘:‘,dvm} dc+N5A =0 (12)
w Vin

(c)

In view of expressions (3) through (6), which contain the random

variables ¢; and 9y, and since by hypothesis ¥ depends on c, it follows that the
expression within the curly brackets on the left side of equation (12) is a
function of the random variable c.

Consider a discrete probability distribution, represented by W;,
commesurate with equations (10) and (11), which corresponds to M cells of
widths 2¢; (i= 1, .. . M). In this case the integral in equation (12) is replaced by
a sum and we obtain

23 wiI"‘ {f(d&:+z§y5'§y)dy+rt§“y&yg.dy}dx+N6A=0 (13)

i=1

Note that 56§ ’ 57:,, and 87,}';. contain M + 2 independent variations,
namely §u, dv’and dy; (i=1,...M).

Substitution of equations (2) - (7) into expression (13), integrating by parts

and collecting terms which multiply du, v’ and 8y; (i = 1, . . . M, we obtain
the following (M + 1) field equations for vand V¥;(i=1,... M)

Nlv’+v)+ 21:%‘:1 {Q(v - wi) +(om/06, GEF[v " +(01/w), "'i] } =0 (14




'W;-thf(\'"%) + ZthnF[v ’ +(¢f/¢m)ivi] =0 (i=1,...M) (15)

with the boundary conditions
v,(12)=0, vi(0)=0 (i=1,...M) andv’0)=0. (16)

Note that the coupled system of equations (14) and (15) is non-linear due to
the presence of the function F, which is non-linear in its argument.

In equations (15) I;=h3/12. Note that the variation 8u yields the trivial
result N = constant = Nyppjied, and requires no further consideration.

Unlike equations (15), which apply to the M individual cells, equation
(14) expresses the lateral equilibrium of the entire composite. To ascertain
lateral equilibrium of each cell it is necessary to impose distributed transverse

L2

loads gj(x) (i=1,...M) and consider their virtual workf qidvdx.

Reemployment of the principle of virtual work for each individual cell,

collecting terms that multiply 8v and utilizing the solution for v and V;
which corresponds to the system of equations (14) - (16), we get

u=Nv " +v,)- %‘E [arlv”- )+ (/o GRF v + o/aulv )] a7

i=1

The relative magnitudes of q;/13) serve as measures for the validity of the
approximation inherent in assuming common u and v in all layers. It will be
shown in the next section that for polymeric composites all the above ratios
appear to be less than 102,

A non-dimensional version of equations (14) and (15) is obtained upon

2
introducing X = x/L, V = v/L and the non-dimensional factors a? =§E%— ,

2 _2GghL? .2 _NI2
*="Edr ' * ~Edf

Then upon denoting Y = dV/dX, equations (14) and (15) read




M
AHY+Y)+raiY+ Y wi{-agvi +(¢m/¢f)ia.2,.1=[y+(¢,/¢.,.)]‘vi)-o (18)
i=1

and

Vi +ad(Y-v)-ahF[Y+ (/o) ]=0 G=1..M (19)

with the boundary conditions

v,(1/2)=0, %(0)=0, (i=1,...M) and Y(0)=0. (20)

Results

The solution to equations (18) - (20) was obtained numerically and pertains
to graphite/PEEK (APC-2) composites. The interval 0 < X < 1/2 was
subdivided into K equal sub-intervals and derivatives were expressed by
means of central finite differences. The discretized system of equations was
solved iteratively to obtain values of V and V; for increasing load N in the
pre-buckling range. In accordance with observations by Johnson et al. (1991)
the matrix material was assumed fail in those regions where %y 2 0.05. The
response in the post-buckling range was evaluated by prescribing the location

X* where %) = 0.05 in the most recently failed cells and evaluating the
corresponding deflected shape V(X) and applied load N.

Complete details are given in the Appendix.

The computations employed values of E¢= 214 GPa and G¢ = 13.8 GPa,
which reflect the significant transverse isotropy of the AS4 fibers (Aboudi
(1991)). The in-situ shear stress-strain response of the PEEK resin was based
upon the reduction of data collected by Kyriakides and Liechti (1993). The in-
situ data are shown in Figure 3, where they are contrasted with data for
unreinforced PEEK.

q
The in-situ shear data were expressed by the relation Y= i‘ + (g') where

A = 3096 MPa, B = 169.93 MPa, q = 0.23781 and t in MPa. As noted earlier,
shear failure was assumed to occur at a strain of ¥, = 0.05. In addition, we took




L = 400d and 8 = 4d, as suggested by Kyriakides and Liechti (1993), with a fiber
diameter d = 7.6 pm.

The computational scheme considered four random cell sizes, namely

four discrete random values of ¢; which accord with the distribution
function of equation (11). These are shown in Figure 4.

Computaitonal results are shown in Figures 5 - 12.

Figure 5 exhibits the variation of the applies stress o vs. the non-
dimensionalized maximal lateral deflection v(0)/h. The short plateau-like
region at 1.5 < v(0)/h < 1.8 is due to matrix failure which initiates and spreads
within the cell with highest fiber volume fraction (¢ = 0.975). Failure by
buckling occurs at ¢ = 1220 MPa (point A). In a displacemnt controlled
experiment a further increase in A will be accompanied by a drop in ¢ and a
corresponding reduction in v(0)/h. The post buckling response is represented
by the segment AB in Figure 5.

Results for the non-dimensionalized displacement V and slope Y are
plotted versus the non-dimensional distance X in Figures 6 and 7 for various
load levels in both pre and post buckling ranges. As may be expected, these
curves are approximately proportional to cos X and sin X in the pre-buckling
range, where deformed shapes are dominated by the form of the initial
misalignment. Note, however, the substantial deviations in the deformed
configurations within the post-buckling range, where they no longer
resemble the cos X shape of the initial misalignment. The most significant
departures occur near X = 0.5, where matrix failures initiate.

The distributions of % versus X are plotted in Figures 8(a) through 8(d).
These distributions are shown within the four distinct cells and for various
levels of applied stress. Figure 8(a) corresponds to a pre-buckled stress level

© = 654 MPa, Figure 8(b) corresponds to the buckling stress ¢ = 1220 MPa (point
A in Figure 5) when the matrix within the cell with ¢¢ = 0.975 failed over the
range 0.16 < X < 0.5.

Figures 8(c) and 8(d) correspond to post-buckling loads of ¢ = 730 MPa and

o = 722 MPa, respectively. The latter stress corresponds to point B in Figure 5,
which lies directly below point A in that figure. Note the spreading of the

failure region in the cell with ¢; = 0.8 between the post-buckling stages
depicted in Figures 8(c) and 8(d). Namely, matrix failure which was confined

to 0.49 < X < 0.5 at 6 = 730 MPa expanded over 0.45 < X < 0.5 as the post

10




buckling load level proceeded to drop to ¢ = 7.22 MPa. There were also
increases in 1t} within the unfailed cells with ¢¢ = 0.45 and ¢ = 0.175.

The central theme of the present article is demonstrated in Figures 9(a)

through 9%(d). Those figures exhibit the fiber shear strains Yy versus the non-
dimensional distance X for the same circumstances as in Figures 8(a) - 8(d).
The essential feature of those figures develops within the post-buckling

range, where discontinuities in ﬁy are noted to occur simultaneously within
all cells. These discontinuities are located at X = 0.49 in Figure 9(c) and at
X = 0.45 in Figure 9(d). No such discontinuities exist in the pre-buckling stage
or at buckling.

We suggest that the foregoing discontinuities in Yy portend the onset of
fiber kinking.

Figure 10(a) exhibits the computed values of the lateral loads q;(X) versus
X within all four cells at buckling, namely at 6 = 1220 MPa. These loads,

which were evaluated through equation (17), are much smaller than 1, =70
MPa, aiiesting to the validity of the premises of the present model.  For
purposes of comparison, the same lateral loads are plotted versus X in Figure
10(b) when the fibers are modelled as Bernoulli-Euler beams, employing a
previous analysis by Chung and Weitsman (1993).

Additional effects of random fiber spacings are exhibited in Figures 11 and
12. Figures 11(a) and 11(b) concern the evolution of fiber curvatures with load
within the pre-buckling range and demonstrate the contrast between
uniformly spaced and randomly spaced circumstances. It may be noted that
the randomly spaced case gives rise to highly concentrated curvatures, with
magnitudes which exceed by three or four folds the levels which correspond
to the uniformly spaced case. If one accepts the premise of Yin (1992) that
kinks occur when fiber's curvature exceeds a certain threshold level, then the
current analysis indicates the existence of an enhanced likelihood of kinking
due to non-uniform fiber spacing. Such kinking may preceed failure by
buckling.

Finally, the effect of random fiber spacing on compressive strength is
shown in Figure 12, where buckling failure loads are plotted versus the fiber

volume fraction ¢;. The results for the random case were computed for

average values ;f (with the distribution shown in Figure 4) that are identical
with the constant ¢; for the uniformly spaced case. Note that random fiber

11




spacings result in lower strengths with ;r, which accords with experimental
observations by Piggott and Harris (1980).

Conclusions

A mechanics model was presented for the compressive response and
failure of uni-directionally reinforced polymeric composites loaded parallel to
the fiber direction. The analysis accounted for the non-linear shear response
of the resin, including its uitimate shear strain, and for shear deformable
fibers. The model incorporated two kinds of geometric imperfections,
namely, initial fiber waviness and random fiber spacings. Excepting the
works by Chung and Weitsman (1993, 1994), the latter kind of imperfection
has not been considered elsewhere.

Computational results were evaluated within both pre and post-buckling
ranges of compressive response. The paramount result of this work is an
indication that a band of discontinuity in the fibers' shear strains can occur
immediately beyond failure by buckling. Such a discontinuity may portend
the formation of kink bands which are observed in many failed specimens.

In addition, it was shown that an accounting for random fiber spacings
reduces the predicted values of compressive strength and results in a
correlaiton between the above strength and fiber volume fractions which
concurs with experimentally observed trends.

Acknowledgement

This work was performed under Contract N00014-90-J-1556 from the Office
of Naval Research to one of the authors (YW). The authors wish to thank the
program manager, Dr. Y. Rajapakse of the Mechanics Division, Engineering
Sciences Directorate, for his encouragement and support.

References
Aboudi, J. (1991). Mechanics of Composite Materials. Elseveier (p. 55).

B‘lid.ia'nsky,' B. and Fleck, N. A. (1992). Compressive Failure of Fibre
- Composites. Journal of Mechanics and Physics of Solids, 41, 193-211.

12




Camponeschi, E. T., Jr. (1991). Compression of composite Materials: A
Review. Composite Materials: Fatigue and Fracture, ASTM STP 1110, 550-
578.

Chung, I. and Weitsman, Y. J. (1993). A Mechanics Model for the Compressive
Response of Fiber Reinforced Composites. Report ESM93-2.0-CM,
Department of Engineering Science and Mechanics, The University of
Tennessee (To appear in the International Journal of Solids and
Structures).

Chung, L. and Weitsman, Y.J. (1993). A Model for the Micro-Buckling/Micro-
Kinking Compressive Response of Fiber-Reinforced Composites (To
appear in Proceedings of the 12th U. S. National Conference of Applied
Mechanics, Seattle, WA, 1994).

Davis, Jr., J. G. (1975). Compressive Strength of Fiber-Reinforced Composite
Materials. Composite Reliability, ASTM STP 580, 364-377.

Davy, P. ]J. and Guild, F. ]J. (1988). The Distribution of Interparticle Distance
and Its Application in Finite Element Modeling of Composite Materials.
Proceedings of Royal Society, A418, 95-112.

Dixon, W. J. and Massey, F. J. (1969). Introduction to Statistical Analysis.
McGraw Hill-Kogakusha.

Evans, A. G. and Adler, W. F. (1978). Kinking as a Mode of Structural
Degradation in Cabon fiber Composites. Acta Metallurgica, 26, 725-738.

Garg, S. K., Svalbonas, V., and Gurtman, G. A. (1973). Analysis of Structural
Composite Materials, M. Dekker Inc., New York.

Greszczuk, L. B. (1975). Microbuckling Failure of Circular Fiber-Reinforced
Composites. AIAA Journal, 13, 1311-1318.

Guynn, E. G., Ochoa, O. O, and Bradley, W. L. (1992). A Parametric Study of
Variables That Affect Fiber Microbuckling Initiation in Composite
Laminates: Part 1 Analyses. Journal of Composite Materials, 26, 1594-1616.

Hahn, H. T. and Williams, J. G. (1986). Compression Failure Mechanisms in
Unidirectional Composites. Composite Materials: Testing and Design,
ASTM STP 893, 115-139.

Hermann, L. R.,, Mason, W. E., and Chan, S. T. K. (1967). Response of

Reinforcing Wires to Compressive States of Stress. Journal of Composite
Materials, 1, 212-226.

13




Highsmith, A. L., Davis, J. J., and Helms, K. L. E. (1992). The Influence of Fiber
Waviness on the Compressive Behavior of Unidirectional Continuous
Fiber Composites. Composite Materials: Testing and Design, ASTM STP
1120, 20-36.

Johnston, N. J., Towell, T. W., and Hergenrother, P. M. (1991). Physical and
Mechanical Properties of High Performance Thermoplastic Polymers and
Their Composites. Thermoplastic Composite Materials edited by Carlsson,
L. A, Elsevier Science Publishers, 27-71.

Kyriakides, S. and Liechti, K. M. (1993). Private communication.

Lanir, Y. and Fung, Y. C. B. (1972). Fiber Composite Columns under
Compression. Journal of Composite Materials, 6, 387-401.

Lin, K. Y. and Zhang, X. J. (1992). Effect of Fiber Waviness on the
Compressive Strength of Laminated Composites. Proceedings of the 2nd
International Symposium on Composite Materials and Structures, Beijing,
China, 120-125.

Morley, J. G. (1987). High Performance Fiber Composites, Academic Press.

Na, T. Y. (1979). Computational Methods in Engineering Boundary Value
Problems, Academic Press.

Piggott, M. R. and Harris, B. (1980). Compression Strength of Carbon, Glass
and Kevlar-49 Fibre Reinforced Polyester Resins. Journal of Materials
Science, 15, 2523-2538.

Piggott, M. R. (1993). Compressive Strength of Composites: How to Measure It
and How to Improve It. Advanced Composites '93. Proceedings of the
International Conference on Advanced Composite Materials (ICACM),
Wollongong, Australia, February 15-19, 1993. (Chandra and Dhingra, Eds.)
pp- 51-59 TMS. Publication.

Rosen, B. W. (1965). Mechanics of Composite Strengthening. Fiber Composite
Materials, American Society for Metals, 37-75.

Sadowsky, M. A,, Py, S. L. and Hussain, M. A. (1967). Buckling of Microfibers.
Journal of Applied Mechanics, 34, 1011-1016.

Wang, A. S. D. (1978). A Nonlinear Microbuckling Model Predicting the

Compressive Strength of Unidirectional Composites. ASME Paper 78-
WA/Aero-1, 1-8.

14




W

Washizu, K. (1975). Variational Methods in Elasticity and Plasticity. Pergamon
Press.

Weitsman, Y. and Chung, 1. (1994). Can the Compressive Response of Fiber-
Reinforced Composites be Modelled by Layered Arrays? Report
ESM94-1.0-CM, Department of Engineering Science and Mechanics, The
University of Tennessee.

Yin, W. L. (1992). A New Theory of Kink Band Formation. AIAA-92-2552-CP,
3028-3035.

15




Appendix
dv;

Upon denoting &; =X’ the non-dimensionalized governing equations
(18) and (19) read

v Omi
AXY+Yo) + oY + p) w(-a,zyi + aﬁ.—’;—ﬁ) =0
jml

di

aY + aﬁy - Vi) - alzl\Fi = O (A‘l)

“D=§ (i=1,...M)

The first equation applies to the entire composite, as implied by the
summation over all the Voronoi cells, while the second and third apply to
the M individual cells. We thus have 2M+1 equations. This system of
nonlinear coupled differential equations can be converted into algebraic
equations by means of finite differences.

Let N denote the number of nodes along the buckling span, resulting in

N-1 intervals of length AX and mid-nodes. For the mid node between n and
n+1 th nodes, which is indicated by n+1/2 in the following, the finite
difference version of (A-1) is

M .
~12(Yn+1 s+ Yom1/2) + @ Yns1/2 + Z W{'afz‘l’i.nH/Z + Gﬁ%?Fi,ml/z =0

=1

Ein1Gin

+ o Yne1/2- Vine1/2) - @2Fine1/2=0 (A-2)
Vin+1-¥in
——— 1
gun-r /2

At this stage, the non-linearity due to non-linear matrix response
expressed by F(yxy) is still retained within the system. This non-linearity can
be eliminated by considering the incremented quantities Y+3Y, §+3%, and
y+3y which satisfy equations (A-2). Linearization is then achieved upon
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expanding the non-linear terms in Taylor series, and retaining the first order
terms only. Then, the first of equations (A-2) results in

M
dY, ntl/2 = ™M 1 (Rn+1/2 + 2 wiP wm&l'uwm) (A-3)
Y wiQ2-22 =
=1

where

Pwm=°§-°t%.(ﬁ$ "
Quan=ctroh )

M
Rps1/2= lz(Ym j2+Yone1/2) - 0 Yne1/2 + z W(afz\hm 2- 0%\%&:»1 72
j=1

As shown in equation (A-3), 8Y, which is common to all cells, can be
represented explicitly in terms of other variables 3y;. This enables the

substitution of 8Y into the remaining equations in (A-2). The substitution of
(A-3) into the truncated Taylor expansions of the last two of equations (A-2)
yields the following:

88 n41-98in

M
X +2 Tuumn(Wk.mﬁWk.n)-Q-L-;u-z-(&vumﬁ\lfi.nFUuﬂ/z (A4)
kel

Sin1+88in  Bini1-SWin
2 AX

=Vine1/2

where

- 0} Yne1/2Wine1/2) + 02Fine1/2

. GnSin
Sine1/ o
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T WPy ne1/2Pine1/2
kin+1/2 = M
2(2 WiQine1/2- x’)

i=l

P, 2Rn+ 2
Uin1/2=Sune1/2- (M b1/2 P/ )

Y wiQini/2- A2

i=1

i
Vine1/2=- -VEZ?VE +&ine1/2

It should be roted that equations (A-4) apply to each individual cell. Thus,

we have M values of §; and y; at any mid node. Collecting 3&; and dy;'s and
forming the vectors

(88) = {88, 85, . .. 88"

{5v) = (5w, B, . . . )"

equation (A-4) can be expressed in matrix notation as

)l

Here, the A, B,, and C, are 2M by 2M matrices, and Dy, is a 2M by 1 vector.
Their components are given by

Bofi, M+i)=--1-
oli,M+i) X
Bu{M+i,M+k)=Tiins1/2
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B,‘M+i,M+i) =Tiine1/2-

Afiji)= %

2

Adi,M+i)= 1-
ol ) X

A M+i,i)=--1-
ol )AX

A,‘M+i,M+k) = Tk,i.m-l /72

A..(M+i,M+i) =Tiin+1/72-

Clid)=-1

Q172
2

M+i,i)= -1-
Co{ ) AX

Dyli) = Vine1/2

DiM+i)=Uin12

In the above the ranges of k and i are k=1, ...i-1, i+1,... M, and i=],...

M, respectively.

Denote “&,) ‘Sv} }T by (0} Then, the governing equation for the entire
length of the composite is obtained by collecting equation (A-5). Therefore,

(A [cl o (o) | (D)
(B [Ad [C] (@2} } { (D2)

(Bral [Anal[Cnal || {ona) | | (DN
| 0 [Bnal{ANl] |{@y,)] |{Dna)
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This banded algebraic equation can be readily solved by means of the LU
decomposition (Na (1979)). Since the solution ® is a vector of increments, it
is accumulated at each iterative step to compute § and y. At the end of each
iteration, the norm of ®is calculated to check for convergence. When it
becomes sufficiently small, the iteration is halted, and cumulative values of §

and y are regarded as the convergent solution. 8Y is computed by using
equation (A-3) and accumulated in the same manner to obtain Y. Deflection,
curvature, stress components and other quantities are computed by means of
a post processing subroutine.

To determine the buckling load, both low and high bounds of applied
stress and number of computation intervals are inputed in the program. The
highest load value which still gives a convergent solution is taken to be the
buckling load.

As shown in Figure 5, an unloading process is observed in the post-
buckling regime. In contrast with the presumed linear elastic behavior of
fiber, it is necessary to clearly define the stiffness of the matrix during
unloading. For that purpose, isotropic hardening and elastic unloading of
matrix were assumed.

The post-buckling analysis employs the buckling solution as a starting
stage, which establishes all the initial values of strains and displacements that
correspond to the buckling load, Por. The post-buckling computation
postulates a location X* in the most recently failed cell, which extends the
region of failed matrix in that cell to X*<X<1/2. Consequently, that region,
like previously failed matrix regions under P, does not contribute to the
shear stiffness of the composite. Subsequently, the composite is subjected to
an assumed load level P<P¢r and the numerical scheme is employed to obtain
values of all corresponding stresses and strains. Note that wherever the
scheme predicts unloading, it is programmed to follow a linear elastic

unloading path of the matrix. The value of y at the foregoing location X* is
then compared with y,. If (X*) > yy the level of the load P is reduced
iteratively until the establishment of equality, ¥(X*) = v, is within a prescribed
tolerance. In this manner, we generate the load-deflection curve in the post
buckling regime.
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Eigure Titles

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 10

The fiber reinforced composite represented by a layered medium.
The shear-mode buckling configuration.

Non-linear shear response of PEEK at 21°C. In-situ response is
reduced from composite AS4/PEEK data by Kyriakides and Liechti
(1993) and compared with the behavior of neat resin.

The selected discretization of the random distribution expressed in
equation (10) into four distinct values of ¢, with average value

& = 0.6.

Applied stress vs. non-dimensional maximal lateral deflection
v(0)/h. The pre-buckling stage 0A is followed by the post-buckling
stage AB.

Plots of the non-dimensional deflection V vs. the non-dimensional
distance X at various levels of applied stress.

Plots of the non-dimensional slope Y vs. the non-dimensional
distance X at various levels of applied stress.

The distribution of matrix shear stress vs. the non-dimensional
distance X within the four distinct cells ( ¢¢ = 0.175;

¢¢=045,00000¢;=0.8; 00000 ¢ = 0.975) at various levels of
applied stress. 8(a) 6 = 654 MPa (pre-buckling), 8(b) ¢ = 1220 MPa
(buckling), 8(c) 6 = 730 MPa (post-buckling), and 8(d) ¢ = 722 MPa
(post-buckling. Point B in Figure 5).

The distribution of fiber shear strain vs. the non-dimensional
distance X in the four distinct cells (symbols and stress levels same
as in Figure 8).

Lateral stresses g;(x) at 6 = g = 1220 MPa vs. the non-dimensional
distance X in the four distinct cells. (a) Shear deformable fibers,
(b) Fibers deforming as Bernoulli-Euler beams. (o ¢; = 0.25; o ¢; =
045; .- - &=0.75 — ¢;=0.975).
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Fig. 11

Fig. 12

Non-dimensional fiber curvatures (dY/dX) vs. non-dimensional
distance X at four levels of applied stress in the pre-buckling range

[CERERR G = 654 MPa;, — ¢ = 941 MPa; eseee ¢ = 1021 MPa;

¢ = 1220 MPa (buckling)). (a) Uniformly spaced fibess
with & = 0.6. (b) Randomly spaced fibers (according to Figure 4) with
¢¢ = 0.6.

Variation of compressive strength (= buckling load) with fiber

volume fraction ¢¢ ( = ¢ in randomly spaced case). Comparison
between uniformly and randomly spaced cases.
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Fig. 2  The shear-mode buckling configuration.
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Fig. 3 Non-linear shear response of PEEK at 21°C. In-situ response is
reduced from composite AS4/PEEK data by Kyriakides and Liechti (1993) and
compared with the behavior of neat resin.
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Fig. 4 The selected discretization of the random distribution expressed in

equation (10) into four distinct values of ¢¢, with average value ¢¢= 0.6.
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Fig. 5 Applied stress vs. non-dimensional maximal lateral deflection
v(0)/h. The pre-buckling stage 0A is followed by the post-buckling stage AB.
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Fig. 7 Plots of the non-dimensional slope Y vs. the
non-dimensional distance X at various levels of applied stress.
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The distribution of matrix shear stress vs. the non-dimensional

$¢=0.175;, e————— ¢¢ = 0.45;

000009 =0.8; ¢ ¢ ¢ ¢ ¢ & = 0.975) at various levels of applied stress.

8(a) 6 = 654 MPa (pre-buckling), 8(b) ¢ = 1220 MPa (buckling),
8(c) o = 730 MPa (post-buckling), and 8(d) ¢ = 722 MPa
(post-buckling. Point B in Figure 5).
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Fig. 9 The distribution of fiber shear strain vs. the
non-dimensional distance X in the four distinct cells
(symbols and stress levels same as in Figure 8).
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Fig. 10 Lateral stresses gj(x) at 6 = O = 1220 MPa vs. the non-dimensional

distance X in the four distinct cells. (a) Shear deformable fibers,
(b) Fibers deforming as Bernoulli-Euler beams.

(09 =0.25; e O¢=045; ---¢¢=0.75, — ¢¢=0.975).
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Fig. 11 Non-dimensional fiber curvatures (dY/dX) vs. non-dimensional
distance X at four levels of applied stress in the pre-buckling range
(CREERE 6 =654 MPa; — 0 =941 MPa; eeeee 0= 1021 MPa;

o = 1220 MPa (buckling)). (a) Uniformly spaced fibers with ¢; = 0.6.

(b) Randomly spaced fibers (according to Figure 4) with & =0.6.
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Fig. 12 Variation of compressive strength (= buckling load) with fiber

volume fraction ¢¢ ( = ¢¢ in randomly spaced case). Comparison between
uniformly and randomly spaced cases.
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